The Role of Radiation in the Origin and Evolution of Life

2000 ◽  
Vol 154 (3) ◽  
pp. 353-353 ◽  
Author(s):  
Ivan G. Draganíc
2021 ◽  
Author(s):  
Lars Olof Björn

Abstract. This is a comment to: “Fundamental molecules of life are pigments which arose and co-evolved as a response to the thermodynamic imperative of dissipating the prevailing solar spectrum” by K. Michaelian and A. Simeonov, Biogeosciences, 12, 4913–4937, 2015. Michaelian and Simeonov formulate the leading thought in their article “The driving force behind the origin and evolution of life has been the thermodynamic imperative of increasing the entropy production of the biosphere through increasing the global solar photon dissipation rate”. I doubt that the reasoning that follows regarding the role of “pigments” (in which they include all substances able to absorb solar radiation) is correct.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 86
Author(s):  
Maheen Gull ◽  
Matthew A. Pasek

The emergence and evolution of prebiotic biomolecules on the early Earth remain a question that is considered crucial to understanding the chemistry of the origin of life. Amongst prebiotic molecules, glycerol is significant due to its ubiquity in biochemistry. In this review, we discuss the significance of glycerol and its various derivatives in biochemistry, their plausible roles in the origin and evolution of early cell membranes, and significance in the biochemistry of extremophiles, followed by their prebiotic origin on the early Earth and associated catalytic processes that led to the origin of these compounds. We also discuss various scenarios for the prebiotic syntheses of glycerol and its derivates and evaluate these to determine their relevance to early Earth biochemistry and geochemistry, and recapitulate the utilization of various minerals (including clays), condensation agents, and solvents that could have led to the successful prebiotic genesis of these biomolecules. Furthermore, important prebiotic events such as meteoritic delivery and prebiotic synthesis reactions under astrophysical conditions are also discussed. Finally, we have also highlighted some novel features of glycerol, including glycerol nucleic acid (GNA), in the origin and evolution of the life.


Author(s):  
M. Markov ◽  
M. Markov

This paper is written in order to summarizes the role of electromagnetic fields in the origin and evolution of life on Earth, as well as hazard and benefit from electromagnetic fields. It is an attempt to show that today the mankind and the entire biosphere are subjected to a global experiment conducted without protocol, monitoring and even knowing the parameters of the applied electromagnetic fields. At the same time, electromagnetic fields used in magnetotherapy has been proven to be beneficial in treatment of various health problems. Magnetotherapy is non-invasive, safe, and easily applied methods to directly treat the site of injury, the source of pain, and inflammation. The development of advanced communication technologies year after year increases the hazard for the biosphere and mankind. The paper discuses the contradiction between scientists and technological engineers in the line thermal or nonthermal are effects of electromagnetic fields. The specific problems with children health are analyzed. It focused on the facts that at the end of the second decade of this century more aggressive mobile communications, such as 4G and especially 5G are being introduced in the North America and Europe without any attempt to evaluate the hazard for civilization.


1989 ◽  
Vol 19 (3-5) ◽  
pp. 387-388
Author(s):  
R. L. Mancinelli
Keyword(s):  

Author(s):  
Rachel L. Klima ◽  
Noah E. Petro

Water and/or hydroxyl detected remotely on the lunar surface originates from several sources: (i) comets and other exogenous debris; (ii) solar-wind implantation; (iii) the lunar interior. While each of these sources is interesting in its own right, distinguishing among them is critical for testing hypotheses for the origin and evolution of the Moon and our Solar System. Existing spacecraft observations are not of high enough spectral resolution to uniquely characterize the bonding energies of the hydroxyl molecules that have been detected. Nevertheless, the spatial distribution and associations of H, OH − or H 2 O with specific lunar lithologies provide some insight into the origin of lunar hydrous materials. The global distribution of OH − /H 2 O as detected using infrared spectroscopic measurements from orbit is here examined, with particular focus on regional geological features that exhibit OH − /H 2 O absorption band strengths that differ from their immediate surroundings. This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’.


2017 ◽  
Vol 131 (1) ◽  
pp. 77-89 ◽  
Author(s):  
I. Evelin Kovalsky ◽  
Juan M. Roggero Luque ◽  
Gabriela Elías ◽  
Silvia A. Fernández ◽  
Viviana G. Solís Neffa

Author(s):  
Robert K. Logan

In this presentation we will study propagating organization. We begin by examining the evolution and origin of language by briefly reviewing the impact of the phonetic alphabet (Logan 2004a), the evolution of notated language (Logan 2004b), the origin of language and culture (Logan 2006, 2007), the role of collaboration in knowledge management (Logan and Stokes 2004), the impact of “new media” (Logan in preparation). We will then connect this work to the propagating organization of all living organisms (Kauffman et al. in press) where we will show that information in biotic systems are the constraints that instruct living organisms how to operate. We will demonstrate that instructional or biotic information is quite different than the classical notion of information Shannon developed for addressing engineering problems in telecommunications. We also will show that biosemiosis is in some sense equivalent to propagating organization (Kauffman et al. in press). We then conclude our presentation with the speculation that there exist at least seven levels of biosemiosis.


Sign in / Sign up

Export Citation Format

Share Document